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Abstract. Hyperspectral images (HSIs) are commonly applied in environmental monitoring, urban 

mapping, crop study, and mineral identification. These applications recurrently call for the distinguishing of 

the class of each pixel. Although several convolutional neural network (CNN) models have been proposed by 

recent researchers, none of them have been established as promising in terms of classification accuracy 

because of the wealth of information involved in these sorts of images for the classification of hyperspectral 

remote sensing images. Also, the high-dimensionality of the information, the problem of inseparability, and 

the limited availability of training samples are still an open challenge. This research proposes a novel 

convolutional neural network 3D spatial-spectral network (Model3DSN) model for the classification of 

hyperspectral remote sensing data, i.e., Indian Pines, Salinas Scene, and PaviaU. First, we deployed the 

principal component analysis (PCA) technique for low-dimensionality reduction of pixels and then 2-D and 

3-D convolutions for discriminative spectral-spatial feature learning. We compared Model3DSN’s efficiency 

against the existing spatial-spectral state-of-the-art (SOTA) models. The high accuracy achieved with the 

Model3DSN demonstrates its efficiency as a SOTA method for HSI remote sensing image classification, thus 

providing an in-depth interpretation of HSI images. 
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1. Introduction 

Hyperspectral images (HSIs) are commonly used in various areas, including environmental monitoring, 

urban mapping, mineral identification, and crop analysis. This is attributed to the enormous amount of 

information contained in these categories of images which, by mixing rich spectral-spatial information, 

promote better land characterization and study [1]. 

Studies show that spatial features are useful in enhancing the representation of HSI data and improving 

the accuracy of its interpretation. As a result, it has contributed to the publication of many articles such as [2] 

in the field of spatial feature extraction in recent years. Supplementing spectral information with spatial 

information for HSI image classification has recently attracted considerable interest, which researchers have 

begun to combine both spatial and spectral information [3], [4] in the background of active learning (AL) in 

remote sensing. Generally, the inclusion of spatial information in the classification of images is directly 

related to the pixel neighbourhood concept. In previous years, researchers have suggested some spatial-

spectral-based methods. For example, Zhang et al. [5] introduced a dual-channel CNN that combines both 1-

D CNN and 2-D CNN to derive features. Hamida et al. [6] developed a 3-D convolutional neural network (3-

D-CNN) approach that allows joint spectral-spatial details. However, HSI data, together with its high-

dimensional, possess several elements that make the exercise of classification difficult. Often, it suffers from 

high intra-class variation comparable to very high-resolution (VHR) images, resulting from unregulated 

reflectance changes collected by the spectrometer. 

In previous years, research conducted reveals some factors influencing the classification results achieved 

with HSI images. First, the high spectral feature dimension (i.e. hundreds of coupled spectral channels) 

creates the Hughes effect that can deeply decline the accuracy of classification [7]. For example, 

indistinguishable spectral features (e.g., identical building materials for both parking lots and roofs in the city 

area) [8] can be shared by different objects, making it even harder to classify HSIs using spectral details. 
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Second, the accuracy of classification suffers a lot from substantially enhanced spatial resolution. In 

particular, rich data generated by high-resolution images leads to an increased intra-class disparity and a 

decrease in the inter-class disparity in both spectral and spatial domains [9], resulting in a low accuracy 

interpretation and inhibits the classifier’s efficacy. For image classification, it is important to bring structural 

and contextual knowledge into the spatial domain as it is widely acknowledged. Appertaining to these two 

aspects of the problem, therefore, there is need to stipulate the building of effective dimension reduction (DR) 

and spatial feature extraction approaches [10]. 

PCA is an example of unsupervised feature technique for feature extraction used to derive orthogonal 

features from a data set and decrease the feature space's dimensionality [11]. Authors such Konstantinos et al. 

[12] used Randomized PCA to minimize the number of spectral channels and then combined spectral-spatial 

features via CNN. To this end, we suggest the use of the PCA technique to understand the intra-class 

variability as well as the correlation among the various classes in the spectral space. On the other hand, it 

improves the separability among classes, decreases, and brings a balance of the intra- and inter-class criteria 

in our proposed model. While PCA can effectively project spectral information into a low-dimensional 

representation, different artifacts which share similar spectral properties cannot be differentiated. Many DL-

based techniques have lately been designed to address the stated challenges that demonstrate magnificent 

promise in the analysis of HSI data. Furthermore, only a few researches have mainly focused on the study of 

hyperspectral images using an integration of both spectral-spatial features. Therefore, for HSI remote sensing 

image classification, spatial characteristics are incorporated with spectral features in our novel convolutional 

neural network 3D spatial-spectral network (Model3DSN) proposed model. The main achievements and 

contributions of this study are thus defined as: 

 Since neighbor intensities of the hyperspectral images are closely correlated at such a high spatial 

resolution, a spectral signature may cover a lot of redundant contents. As a result, we include the 

principal component analysis (PCA), which is commonly considered to be a good method for 

reducing dimensions, to reduce the set of bands and unearth discriminative details. 

 In this study, we present a 3D spatial-spectral feature network that fuses a set of 2D (spatial features) 

and 1D (spectral features) for joint learning of the HSI hypercubes. 

We investigated the performance of the Model3DSN network using three widely used HSI data sets, 

including the PaviaU, Salinas Scene, and Indian Pines, to assess the efficacy of our network model. 

2. Methodology 

In this part we discuss our proposed methodology. Fig. 1 shows our proposed model, i.e., novel 

convolutional neural network 3D spatial-spectral network (Model3DSN) that distinguishes between 2-D and 

3-D convolution operations. The proposed architecture uses defined procedures to carry out the HSI image 

classification process. First, we apply the PCA technique to derive the sample pixels (or principal 

components (PCs)) of low-dimensional from HSI, and then a 2-D-CNN to derive deep features from 

condensed HSI with a window size of 25 × 25 to evaluate the label of each pixel. We concatenate 3-D-CNN 

into HSI processing taking advantage of the DL's potential to automatically learn spectral-spatial features. 3-

D-CNN performs 3-D convolution with 3-D kernels and can derive spectral and spatial features concurrently 

while retaining their correlations. 

 

Fig. 1: The Proposed Model3DSN Framework. 
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Each feature cube is considered as an independent feature in our Model3DSN model, and is thus 

presented as 

1 1 1
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where 
lD  denotes the spectral depth of the 3-D kernel, i  denotes the number of feature cubes in the prior 

layer, j  denotes the number of kernels in this layer, xyz

lijv  denotes the output at position ( , , )x y z  that is 

computed by convolving the ith  feature cube of the previous layer with the jth  kernel of the lth  layer, and 
hwd

ljk  is the ( , , )h w d th  value of the kernel connected to the ith  feature cube in the preceding layer. As such, 

the output data of the lth  convolution layer comprises i j  3-D feature cubes. 

2.1. Principal Component Analysis (PCA) 

Convolutional neural networks' training and prediction processes are complicated by their high 

dimensionality, which affects not only classification but also training and prediction complexity. PCA seeks 

out the best  -dimensionalk n  orthogonal vectors for representing the information, where k n . The steps 

discussed by [13] can be used to summarize the entire process of determining the PC and the reduced HSI 

data set. We can get a reduced data set from the original high-dimensional data set by following these steps, 

which is the primary goal for dimensionality reduction in PCA. 

Given the data matrix D  of the size M N  where M  represents the various value of observations and 

N  representing the various feature values for each observation. The steps are summarized as: 

1. Standardization of the values of each of the three HSI dataset: here ijd  is the thi  sample value for 
thj  

feature of the dataset D .   is the mean and   is the standard deviation of the dataset D . Finally, 

ijd   is the standardized value of ijd . 

2. The covariance matrix computation, which is computed from the features of the original dataset. 

Covariance between two feature vectors  and X Y  can be calculated since we have standardized the data 

set (i.e., the mean 0   for each feature and the standard deviation 1  ). 
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3. Computing of the Eigenvector and Eigenvalues from the covariance matrix in order to find out the 

PC through equation (3). 

kv v        (3) 

where v  is the eigenvector,   is the diagonal matrix, and k  is the covariance matrix. 

4. The number of top PCs to select and retain is concluded based on the cumulative variance of those 

components (or magnitude of their eigenvalues). From those, a matrix of vectors is formed called a 

feature vector and the cumulative sum is calculated with the expression, 
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j
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
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      (4) 

5. The transposition of the feature vector is computed in this step, where it is multiplied with the 

transposition of the original data set in order to obtain the reduced data set. 

2.2. Spectral-Spatial Features 

Remotely, let 
L mnY  define an HSI with L  spectral channel/band and mn  pixels in the spatial 

domain. Y  maybe interpreted as mn  feature vectors with L  dimensions, i.e.,  1 2, ,..., mny y yY . It can also 

be interpreted as a collection of  2-DL  images of size m n  , i.e.,  1 2, ,..., LY Y YY . Contiguous 

channels/bands in the visible wavelength spectrum are closely related and contain redundant information. 

First, the visible wavelength bands/channels are combined to produce a new image for three reasons: 1) to 

eliminate noisy pixels; 2) to eliminate redundant information; and 3) to extracting meaningful spatial 

information. The most commonly applied and easy image combination approach is finding the average, 

which is defined as 
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where m nS  represents the average channel and 
vL  represents the total number of channels in the visible 

wavelength spectrum. 

At high-dimensional, the two fully connected (FC) layers can leverage more abstract spectral-spatial 

features that are largely robust and invariant. The FC layers transform the 3DSN HSI data set into an output 

vector  1 2
垐 垐, ,..., Ly y y y  based on the number of land-use classes. The number of land-use classes is defined 

via the truth label vector   1 2, ,..., Ly y y y . The 3DSN loss function expression is prescribed as 

 
1

1
ˆ ˆlog( ) (1 ) log(1 )

trainn

i i i i

itrain

Loss y y y y
n 

         (6) 

where ˆ
iy  represents the similar predicted labels for the ith  training sample, 

iy  represents the true label, and 

trainn  represents the size of the training set. The entire network was trained in an end-to-end manner, where 

all the parameters were augmented by the adaptive moment estimation (Adam) optimizer. 

The Adam technique [14], was adopted in our model majorly to maintain a decaying average of those 

past gradients centred on generating adaptive learning rates for each parameter and saving many past 

gradients, which makes it effective, fast convergent, and efficient when coping with the vanishing learning 

rate. We employed the rectified linear activation function (ReLU) principal activation function [15] in our 

proposed model. Also, we implemented another interesting regularization technique to alleviate overfitting 

that is early stopping, which saves the best accuracy at each epoch of the model while ensuring fast 

convergence. Additionally, we used the dropout technique with a probability of dropping node at 0.50 to also 

avert the model's overfitting due to insufficient training sampling set sizes. All the training and simulation 

were done using Python and executed in Google Colab GPU over 100 epochs with a batch size of 25 and 75 

PCs. 

3. Experiments 

In this section, we discuss the data sets deployed in our experiments, the performance analysis metrics 

and finally, the compared SOTA methods. To assess and investigate the efficiency of the Model3DSN 

method we performed extensive HSI classification experiments over three real-world HSI remote sensing 

data sets downloaded from [16], including PaviaU (PU), Indian Pines (IN), and Salinas Scene (SS). We 

randomly selected 15%N   samples from each class to form the training data set (where N  denotes the 

number of training set samples). The remaining 85% sample sets were taken as the data set for testing. With 

randomly selected training samples, each experiment was repeated five times on average. Table 1 gives a 

detailed summary of the data sets used in our experiments. 

Table 1: Public labeled hyperspectral remote sensing data set 

Hyperspectral Image Pixels Bands Range (µm) GSD (m) Labels Mode Classes 

IN 21,025 224 0.4-2.5 20 10,249 Aerial 16 

PU 991,040 103 0.43-0.85 1.3 50,232 Aerial 9 

SS 111,104 227 0.4-2.5 3.7 54,129 Aerial 16 

*GSD -Ground sampled distance 

 

We applied the overall accuracy (OA), average accuracy (AA), and Kappa coefficient (Kappa) 

assessment measures in this study to evaluate the efficiency of the Model3DSN model. Further, in order to 

adequately verify the validity of the Model3DSN method, the experimental results were compared with 

SOTA methods along with end-to-end deep learning-based techniques, which are both spatial-spectral-based 

(i.e., obtained via fusion of spatial-spectral information). Some of the methods we compared our model with 

are 2D-CNN (i.e., spatial-featured-based model) [12], 3D-CNN [6], M3D-CNN [17], SRNN [18], and 

HybridSN [19] (i.e., the spatial-spectral-featured models). 

 

110



  

4. Results and discussions 

The results listed in Tables 2-4 are the classification accuracies of each class for the three hyperspectral 

remote sensing data sets, i.e., IN, PU, and SS, respectively. The highlighted bold values in the tables under 

the Model3DSN model indicate the classes on which our proposed model outperformed the other SOTA 

methods. This is attributable to the adoption of regularization techniques while maintaining the quick 

convergence of the Model3DSN model. The excellent performance obtained validates the performance of 

our model. 

For the three data sets, we report in Table 5 the AA, OA, and Cohen's kappa performance. Experimental 

findings demonstrate that the Model3DSN classification approach presented in this study has superior results 

compared to the results obtained by other SOTA models of convolutional neural networks (CNNs). 

Quantitatively stated, the OA is greater than 98% on the experiments for the Model3DSN approach on the 

data sets tested. Thus, verifies our model as an efficient model that contributes significantly to potentially 

transformative improvements in the classification of the remote sensing scenes over the field of DL. 

Table 2: The Indian Pines (IN) data set per class classification accuracies (%) 

# Name #Samples 2D-CNN 3D-CNN 
M3D-

CNN 
SSRN HybridSN Proposed 

1 Brocoli_green_weeds_1 2009 61.14 70.84 93.52 96.75 100 100 

2 Brocoli_green_weeds_2 3726 67.54 80.21 94.39 98.1 95.06 94.4 

3 Fallow 1976 73.74 77.42 88.9 98.46 99.58 99.86 

4 Fallow_rough_plow 1394 48.18 82.14 89.74 96.72 96.02 98.51 

5 Fallow_smooth 2678 78.44 87.72 91.49 98.17 98.3 99.76 

6 Stubble 3959 85.35 90.04 96.23 98.44 99.52 97.75 

7 Celery 3579 61.14 83.97 96.49 97.63 100 100 

8 Grapes_untrained 11271 86.14 90.12 96.48 98.78 100 100 

9 Soil_vinyard_develop 6203 50.42 80.51 93.1 97.43 100 100 

10 Corn_senesced_green_weeds 3278 68.93 79.33 92.81 97.67 97.71 99.52 

11 Lettuce_romaine_4wk 1068 77.41 83.03 93.62 98.23 99.57 99.86 

12 Lettuce_romaine_5wk 1927 69.03 81.65 93.65 97.36 96.83 99.6 

13 Lettuce_romaine_6wk 916 85.44 90.61 96.09 98.93 100 100 

14 Lettuce_romaine_7wk 1070 85.01 89.56 94.91 98.24 99.81 100 

15 Vinyard_untrained 7268 72.43 74.18 79.8 98.13 97.87 99.7 

16 Vinyard_vertical_trellis 1807 86.14 90.12 96.49 96.75 94.94 96.2 

Table 3: The PaviaU (PU) data set per class classification accuracies (%) 

# Name #Samples 2D-CNN 3D-CNN M3D-

CNN 

SSRN HybridSN Proposed 

1 Asphalt 6631 95.06 97.03 97.00 99.91 99.97 99.93 

2 Meadows 18649 96.09 95.54 94.79 99.78 100 100 

3 Gravel 2099 81.17 95.68 95.03 99.91 100 100 

4 Trees 3064 94.59 97.47 97.51 98.79 98.87 98.96 

5 Painted metal sheets 1345 96.55 98.63 98.66 99.81 99.83 100 

6 Bare Soil 5029 93.65 97.95 98.52 99.91 100 100 

7 Bitumen 1330 91.6 97.55 98.35 99.91 100 100 

8 Self-Blocking Bricks 3682 92.94 96.96 97.92 99.25 99.74 99.84 

9 Shadows 947 96.24 98.53 98.61 99.09 99.13 99.25 
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Table 4: The Salinas Scene (SS) data set per class classification accuracies (%) 

# Name #Samples 2D-CNN 3D-CNN 
M3D-

CNN 
SSRN HybridSN Proposed 

1 Brocoli_green_weeds_1 2009 98.85 95.45 94.78 99.99 100 100 

2 Brocoli_green_weeds_2 3726 98.81 97.04 97.28 99.99 100 100 

3 Fallow 1976 98.48 96.27 96.71 99.99 100 100 

4 Fallow_rough_plow 1394 98.13 96.94 96.79 99.88 100 100 

5 Fallow_smooth 2678 98.05 96.47 97.00 99.85 100 100 

6 Stubble 3959 98.85 96.59 96.51 99.99 100 100 

7 Celery 3579 98.85 96.76 96.73 99.99 100 100 

8 Grapes_untrained 11271 92.47 86.79 89.91 99.99 100 100 

9 Soil_vinyard_develop 6203 98.85 96.85 96.98 99.99 100 100 

10 Corn_senesced_green_weeds 3278 97.67 95.40 94.59 99.89 99.71 100 

11 Lettuce_romaine_4wk 1068 98.58 95.16 95.33 99.85 99.98 99.9 

12 Lettuce_romaine_5wk 1927 98.85 96.00 95.78 99.98 100 100 

13 Lettuce_romaine_6wk 916 98.85 95.97 95.98 99.99 100 100 

14 Lettuce_romaine_7wk 1070 98.71 95.64 95.70 99.98 100 100 

15 Vinyard_untrained 7268 90.37 76.35 84.46 99.95 100 100 

16 Vinyard_vertical_trellis 1807 98.77 91.55 88.39 99.95 100 100 

Table 5: The classification accuracy of the proposed model in comparison with the reference baseline methods on a 

15% training data set 

Methods 

Hyperspectral remote sensing data sets 

Indian Pines data set PaviaU data set Salinas Scene data set 

OA Kappa AA OA Kappa AA OA Kappa AA 

2D-CNN 82.43±1.8 79.28±1.8 75.21±4.1 96.49±0.6 94.89±0.9 95.30±0.6 96.32±1.1 95.86±1.1 96.88±0.7 

3D-CNN 83.16±0.4 80.34±0.6 81.26±3.6 96.51±0.6 94.94±0.7 96.54±2.6 90.92±0.7 93.21±1.2 93.41±3.0 

M3D-CNN 85.65±2.3 84.50±2.2 81.62±3.6 96.54±1.5 94.58±1.8 97.78±2.1 94.22±0.8 93.54±0.9 97.01±1.8 

SSRN 98.56±0.2 98.18±0.7 88.55±1.0 99.70±0.3 99.65±0.8 99.52±0.1 99.78±0.2 99.82±0.0 99.78±0.0 

HybridSN 98.58±0.1 98.21±0.3 98.14±0.5 99.87±0.9 99.83±0.6 99.73±0.8 99.97±0.8 99.97±0.3 99.97±0.5 

Model3DSN 98.60±1.4 98.40±0.2 98.45±0.8 99.90±0.4 99.88±1.0 99.81±1.5 99.98±0.3 99.98±0.6 99.98±0.2 

 

a) Experiment on Indian Pines data set: Table 5 shows a comparison of the classification accuracy 

results on the IN data set. We can see from the table, the SSRN, HybridSN, and Model3DSN 

methods have the highest performance. The performance of OA using Model3DSN was improved by 

16.17%, 15.44%, and 12.95%, respectively, as compared to the 2D-CNN, 3D-CNN, and M3D-CNN 

methods. The HybridSN and Model3DSN methods' excellent performance on AA and kappa 

coefficients perfectly illustrates their steadiness and accuracy. 

b) Experiment on PaviaU data set: The SSRN, HybridSN, and Model3DSN methods had the best 

classification accuracy on the PU data set, both of which are above 99%, as can be seen in the 

comparison of the classification accuracy of the spectral-spatial methods in Table 5. Respectively, 

the Model3DSN method's classification accuracy is 3.41%, 3.39%, and 3.36% higher than the 2D-

CNN, 3D-CNN, and M3D-CNN SOTA methods. HybridSN and Model3DSN have the highest 

average classification accuracy and kappa coefficient, indicating that the predicted classification 

results of different types of features were more consistent with the real object (reference object) 

information. Hence, its steadiness and accuracy. 

c) Experiment on Salinas Scene data set: The classification accuracy of Model3DSN and HybridSN 

methods are superior on the SS dataset, as can be seen in Table 5. As compared to SOTA methods, 

2D-CNN, 3D-CNN, and M3D-CNN methods, our proposed method improved the OA by 3.65%, 

9.05%, and 5.75%, respectively.  

Broadly, the experimental results on three broadly used HSIs demonstrate that the Model3DSN 

approach outperformed other SOTA methods in terms of overall accuracy, this is illustrated in Fig. 2. 
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Fig. 2: The overall accuracy (OA) performance for Model3DSN proposed model compared to the state-of-the-art 

methods. 

5. Conclusion 

In this study, we proposed a novel convolutional neural network 3D spatial-spectral network 

(Model3DSN) model for the classification of hyperspectral remote sensing images. We utilized the PCA 

technique for the extraction of low-dimensional pixels. The 2-D and 3-D convolutional processes were 

adopted for spectral-spatial feature learning. Our proposed model was validated through the use of three 

well-known HSI data sets and compared with state-of-the-art (SOTA) methods. The Model3DSN model 

outperforms the SOTA method with excellent performance. Overall, our results appear consistent with all the 

data sets experimented. The experimental results demonstrate clear support for the spectral-spatial features in 

the classification of HSI images and achieving of an enhanced performance. We aim to experiment—more 

efficient 3-D-CNN-based HSI classification methods that can analyze unlabeled samples in future research. 

Unlabeled samples are much more available in HSI than labeled samples. 
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